skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Panigrahy, Nitish K"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available May 1, 2026
  2. Free, publicly-accessible full text available January 1, 2026
  3. Distributing quantum entanglements over long distances is essential for the realization of a global scale quantum Internet. Most of the prior work and proposals assume an on-demand distribution of entanglements which may result in significant network resource under-utilization. In this work, we introduce Quantum Overlay Networks (QONs) for efficient entanglement distribution in quantum networks. When the demand to create end-to-end user entanglements is low, QONs can generate and store maximally entangled Bell pairs (EPR pairs) at specific overlay storage nodes of the network. Later, during peak demands, requests can be served by performing entanglement swaps either over a direct path from the network or over a path using the storage nodes. We solve the link entanglement and storage resource allocation problem in such a QON using a centralized optimization framework. We evaluate the performance of our proposed QON architecture over a wide number of network topologies under various settings using extensive simulation experiments. Our results demonstrate that QONs fare well by a factor of 40% with respect to meeting surge and changing demands compared to traditional non-overlay proposals. QONs also show significant improvement in terms of average entanglement request service delay over non-overlay approaches. 
    more » « less
  4. Quantum switches are envisioned to be an integral component of future entanglement distribution networks. They can provide high quality entanglement distribution service to end-users by performing quantum operations such as entanglement swapping and entanglement purification. In this work, we characterize the capacity region of such a quantum switch under noisy channel transmissions and imperfect quantum operations. We express the capacity region as a function of the channel and network parameters (link and entanglement swap success probability), entanglement purification yield and application level parameters (target fidelity threshold). In particular, we provide necessary conditions to verify if a set of request rates belong to the capacity region of the switch. We use these conditions to find the maximum achievable end-to-end user entanglement generation throughput by solving a set of linear optimization problems. We develop a max-weight scheduling policy and prove that the policy stabilizes the switch for all feasible request arrival rates. As we develop scheduling policies, we also generate new results for computing the conditional yield distribution of different classes of purification protocols. The conclusions obtained in this work can yield useful guidelines for subsequent quantum switch designs. 
    more » « less
  5. Recent technological advancements in satellite based quantum communication has made it a promising technology for realizing global scale quantum networks. Due to better loss distance scaling compared to ground based fiber communication, satellite quantum communication can distribute high quality quantum entanglements among ground stations that are geographically separated at very long distances. This work focuses on optimal distribution of bipartite entanglements to a set of pair of ground stations using a constellation of orbiting satellites. In particular, we characterize the optimal satellite-to-ground station transmission scheduling policy with respect to the aggregate entanglement distribution rate subject to various resource constraints at the satellites and ground stations. We cast the optimal transmission scheduling problem as an integer linear programming problem and solve it efficiently for some specific scenarios. Our framework can also be used as a benchmark tool to measure the performance of other potential transmission scheduling policies. 
    more » « less